4/13/2020

C/C++ Programming

New Paltz

STATE UNIVERSITY OF NEW YORK

n
Chapter 8

Pointers and Arrays

Pointers - Introduction

A pointer is a variable that contains the address of a variable

Pointers are much used in C, because:
v'Pointers are sometimes the only way to express a computation

v’ Pointers usually lead to more compact and efficient code

v’ Pointers and arrays are closely related

SUNY - New Paltz 2
Elect. & Comp. Eng. 2

Chapter 8 1

Chapter 8

b

Pointers - Introduction

Pointer: Contains the address of

T m

Block of

Memory

&C;

s}
0]

The unary operator * is the indirection or dereferencing operator; when applied to a

pointer, it accesses the object the pointer points to

‘ Therefore the statement x = *p; and x = ¢; are equivalent

SUNY - New Paltz
Elect. & Comp. Eng.

4

Pointers - Exercise

int x = 1, y = 2, z[10];

int *ip; /* ip is a pointer to int */
ip = &x;

y = *ip;

*ip = 0;

ip = &z[0];

*ip = Y*2;

Find the values of x, y, and z[0] through 7[9] after the program ends

SUNY - New Paltz
Elect. & Comp. Eng.

4/13/2020

4/13/2020

Pointers Manipulations

This means the location

double *dp
/ that dp points to is a

*ip = *ip + 10;

y:*ip+1/

double

++*ip

\ ig = ip
(*ip)++

++x

Paltz
omp. Eng. 5 5

Pointers and Function Arguments

Since C passes arguments to functions by value, there is no direct
way for the called function to alter a variable in the calling

function

swap(a, bl;

void swap(int x, int v) /* WRONG */

int temp; \

Swaps ONLY copies

temp = x;
X =y of the arguments!
y = temp; C

UNY — New Palt
afﬁ\ct Cnm:.wEn: ‘ 6 6
6

Chapter 8

4/13/2020

Pointers and Function Arguments

/ Passes addresses of the two operands
&b) ;

to function

swap (&a,

void swap (int *px, int *py) /* interchange *px and *py */

int temp;

in caller:

temp = *px;
*PX = *pPy;
*py = "

temp; [:}x
I

in swap:

Px:

PY:

IR

SUNY - New Paltz
Elect. & Comp. Eng. 7

Pointers and Arrays

int af10];

al[o] al1] al9]
int *pa;
pa = &alo0];

pa:

>

N

) SUN a[e]

Elect. & Comp. Eng. 8

Chapter 8 4

Chapter 8

Pointers and Arrays

int *pa;
pa = &alo0];
Pa: ‘ *pa 69 a[O]
h\
a:
a[o]
pa: patl: pat2: *(patl) €= a[l]
0—-_\) / *(pat2) €2 2]
a:
h SUN afo]
Elect. 9
9
Pointers and Arrays
pa = &al[0]; =M pa = a;
a[i] can also be written as * (a+i)
sali] and a+i are also identical
SUNY - New Paltz
b Elect. & Comp. Eng. 10

10

4/13/2020

Chapter 8

Pointers and Arrays

strlen("hello, world") ; /* string constant */
strlen(array) ; /* char array[100]; */
strlen(ptr); /* char *ptr; */

/* strlen: return length of string s */
int strlen(char *s)

int n;

for (n = 0; *s != "\0', S++)
n++;

return n;

SUNY - New Paltz
Elect. & Comp. Eng.

11

11

Pointers and Arrays

Preferred

Declaration

char s[]; €=» char *s;

SUNY - New Paltz
Elect. & Comp. Eng.

12

12

4/13/2020

Chapter 8

Address Arithmetic

If p is a pointer to some element of an array, then:
p++ increments p to point to the next element

p+=I increments it to point i elements beyond
where it currently does.

\
AYSUNY — New Paltz
' Elect. & Comp. Eng.

13

13

Address Arithmetic

If p and g point to members of the same array, then:
relations like ==, /=, <, >=, etc., work properly

For example, p < q is true if p points to an earlier element of the
array than g does

[\
AYSUNY — New Paltz
W’ Elect. & Comp. Eng.

14

14

4/13/2020

Chapter 8

Character Pointers and Functions

char *pmessage;

pmessage = "now is the time";

assigns to pmessage a pointer to the character array.
This is not a string copy; only pointers are involved.
C does not provide any operators for processing an entire string of

characters as a unit

) SUNY - New Paltz

Elect. & Comp. Eng. 15
15
Character Pointers and Fun
There 1s an important differénce between thege detinitions:
char amessage[] = "now is the tiple"; /* an array */
char *pmessage = "now is the tiple"; /* a pointer */
amessage: . now is the time\0
pmessage: | now is the time\0
16

16

4/13/2020

Chapter 8

Character Pointers and Functions

/* strcpy: copy t to s; array subscript version */
void strecpy(char *s, char *t)
int i;

i= 0;
while ((s[i] = t[i]) 1= "\o*)
i++;

For contrast, here is a version of st repy with pointers:

/* strcpy: copy t to s; pointer version */
void strecpy(char *s, char *t)
int i;

i= 0;
while ((*s = *t) 1= *\0") {
sS4+

} L4+
}

‘ SUNY - New Paltz

Elect. & Comp. Eng. 17
17
Character Pointers and Functions
/* strcpy: copy t to s; pointer version 2 */
void strcpy(char *s, char *t)
while ((*s++ = *t++) != "\0")

) i

‘SUNY—New Paltz 18

Elect. & Comp. Eng.

18

4/13/2020

Chapter 8

Pointer Arrays,; Pointers to Pointers

4-{ jklmnopgrst |
—{ abe |

jklmnopgrst |

R
LR

#define MAXLINES 5000 /* max #lines to be sorted */

char *1lineptr [MAXLINES]; /* pointers to text lines */

lineptr[nlines++] = p;
SUNY - New Paltz
& Elect. & Comp. Eng. 19
19
Multi-dimensional Arrays
daytab[i] []j] /* [row] [col] */
rather than
daytab[i,] /* WRONG */
SUNY - New Paltz
b Elect. & Comp. Eng. 20

20

4/13/2020

10

Chapter 8

SUNY - New Paltz
Elect. & Comp. Eng.

Multi-dimensional Arrays

Write a function that multiplies two n by n

square matrices together.

21
21
Initialization of Pointer Arrays
/* month name: return name of n-th month */
char *month name (int n)
static char *name[] = {
"Illegal month",
"January", "February", "March",
llAprilﬂ , |IMayll . "June" ,
"July", "August", "September",
"October", "November", "December"
Vi
return (n < 1 \| n > 12) ? name[0] : name[n];
1
b SUNY - New Paltz
Elect. & Comp. Eng. 22

22

4/13/2020

11

Pointers vs. Multi-dimensional Arrays

int afl10] [20];
int *b[10];

U ais a true two-dimensional array: 200 int-sized locations have
been set aside

1 The conventional rectangular subscript calculation

20 * row +col is used to find the element a[row,col|

SUNY - New Paltz
Elect. & Comp. Eng.

23

23

Pointers vs. Multi-dimensional Arrays

int afl10] [20];
int *b[10];

U bisan array of 10 pointers which are not initialized

a Assuming that each element of b does point to a twenty- element
array, then there will be 200 ints set aside, plus ten cells for the pointers.
UThe important advantage of the pointer array is that the rows of the
array may be of different lengths.

UThat is, each element of b need not point to a twenty-element vector;

some may point to two elements, some to fifty, and some to none at all!

SUNY - New Paltz
Elect. & Comp. Eng.

24

24

Chapter 8

4/13/2020

12

Chapter 8

Pointers vs. Multi-dimensional Arrays
char *name[] = { "Illegal month", "Jan", "Feb", "Mar"];
name:
e+ Illegal month\O |
*~— Jan\0
o——*{Feb\0 |
~— Mar\0
char aname[] [15] = { "Illegal menth", "Jan", "Feb", "Mar" };
aname:
|I1legal month\0 Jan\0 Feb\0 Nar\0
0 15 30 45
SUNY - New Paltz
i Elect. & Comp. Eng. 25
25
Command-line Arguments
#include <stdio.h>
/* echo command-line arguments; 1lst version */
main (int argc, char *argv([])
int 1i;
for (i = 1; i < argc; i++)
printf ("%s%s", argv([i], (i < argc-1) » "™ " . "n);
printf ("\n") ;
return 0;
}
SUNY - New Paltz
b Elect. & Comp. Eng. 26

26

4/13/2020

13

Chapter 8

Command-line Arguments

#include <stdio.h>
#include <string.hs
#define MAXLINE 1000

int getline(char *1line, int max);

/* find: print lines that match pattern from 1st arg */

main(int argc, char *argvl[])

char line [MAXLINE] ;

int found = 0;
if (argc != 2)
printf ("Usage: find pattern\n");
else
while (getline(line, MAXLINE) > O)
if (strstr(line, argv[1l]) != NULL)
printf ("%s", line);

found++;

}
'b return found;
1

{

27

27

4/13/2020

14

